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On the spectrum of p 2 +  V(X)+EX,  with V periodic and E 

complex 

Joseph E Avron? 
Centre de Physique Thtorique, CNRS, Marseille, France 

Received 11 January 1979 

Abstract. It is shown that -d2/dx2+ V(X)+EX,  with V ( x )  periodic and Im E # 0, has a 
spectrum in the form of a ladder for small. 

A recent important paper by Herbst (1979) shows, among other things, that the 
one-dimensional Schrodinger Hamiltonian 

(1) 

D(Ho) = D( p z )  n D(x), Im E # 0 has a compact resolvent and an empty spectrum. Ho 
has a compact resolvent by a quadratic estimate (Herbst 1979), 

Ho = -d2/dXZ + EX, 

IIHO4Il2 + a ll4I2 3 b(lIPZ412 + Ilx4414Y (2) 
with E dependent on a and b. The fact that Ho has an empty spectrum follows from the 
invariance of the spectrum under translations: 

a(&+ Ea) = a(Ho), a E R. (3) 

U,HOU,' =&+€a, (4) 

Since a(Ho) is countable, a(Ho) = 0. Relation (3) follows from 

where (UJ)(x) = f(x +a).  
We shall prove: 

Theorem 1. Let V ( x )  be piecewise continuous, V(x  + 1) = V(x) ,  real and V ( x )  # 
constant. Fix 0 e 8 e w, E = \€leie. Let 

H = Ho + V ( x ) ,  ( 5 )  

with D(H) = D(Ho). Then: 
(i) H is closed and has a compact resolvent. 

(ii) For 0 \ E \  eo, the spectrum a(H) is not empty, is purely discrete (by(i)) and is 
invariant under translation by E. 

(i) is the easy part of the theorem and is the subject of proposition 1 and corollary 1 
below. The rest of the paper is devoted to proving the non-emptiness of the spectrum. 
To this end we shall use the periodicity of the spectrum to prove stability. 
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Remarks. 
(i) Theorem 1 is relevant to the theory of semiconductors: it is associated with the 

‘Stark ladder’ controversy (Avron 1976, Wannier 1960,1962,1969, Zak 1968,1969). 
(ii) Although we make no claim for real E ,  we note that Bentosela (1979) showed 

that for E real there are long-lived states constructed from a subspace with a ‘fixed band 
index’. 

(iii) Zak (1968, 1969) postulates that the ladder corresponds to distinct atomic 
states. 

(iv) For E real the spectrum of the self-adjoint extension of H has no discrete 
eigenvalues: 

(6) 

c [ H ( E = O ) ] = [ A ~ , A ~ ] U [ A ~ , A ~ ] U  . . . , - 0 0 < / \ 0 < A l d h 2 < A 3 S A 4 . .  . (7) 

C[H(E # O)] = (-00,00) 

and 

(see Avron et a1 1977a, Reed and Simon 1978). 
(v) VZconstant comes into the theorem through the existence of at least one 

(instability) gap in the band spectrum (Reed and Simon 1978), ( E  = O), i.e. at least one 
of the s in (7) is <.  

(vi) In fact, not only is R(A)=[H-A]-’ compact but also $p, p > 3 / 2 ,  i.e. the 
singular values of R are in 1’ (see Reed and Simon 1978). This follows from the Weyl 
estimate of the distribution of eigenvalues of p2+lxl and a perturbative argument 
analogous to those in Avron eta1 (1977b) and Avron and Simon (1978). This seems to 
indicate a 1-1 correspondence between the ‘bands’ and the ‘Stark ladders’. 

Proposition 1. Let A have a compact resolvent with a numerical range contained in a 
strip @(A) (a half-plane is allowed); then 

(8) /l[A -A]-’ / /  d {dist[A, @(A)]}-’. 

Proof. A is closed and has no proper extensions. Hence m-accretiveness follows from 
accretiveness. By multiplying A by a phase and shift it can be made accretive. A 

U standard result (Phillips 1959) on m-accretives gives (8). 

From this and theorem 11.1 of Herbst (1979) follows: 

Corollary 1. Let V(x) E LEoc and be periodic. Then V is bounded by zero relative to 
Ho. 

Proof. By the quadratic estimate (2), 

bllxRo(A )I\’ (1  + a  IIRo(A )11’). (9) 

IIVIHo-AI-’I/~IIV[pZ-hI-’II(l +I€IIIxRo(A)II). (10) 

Now 

V is bounded by zero relative to p 2  (Phillips 1959). By (9) and proposition 1, A can be 
0 chosen so that the RHS of (10) is arbitrarily small. 

This proves part (i) of theorem 1.  
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The proof r ( H )  # 0 is a rigorous version of the ‘single band approximation’ (Avron 
et a1 1977a, Wannier 1960,1962,1969, Zak 1968,1969). In the first step, corollary 2, 
we prove that a restriction of the Hamiltonian to a subspace of a single band has a 
spectrum (a Stark ladder). This also holds for the Hamiltonian with no ‘interband 
interaction’. The second step is a proof of the global stability of the spectrum under the 
‘interband interaction’. 

Equation (8) will help us to control the displacement of the Stark ladder eigenvalues 
in a direction (in the complex plane) perpendicular to E. Although we have no control 
on the displacement of the Stark ladder eigenvalues in the direction parallel to E, the 
periodicity of the spectrum in this direction, together with a standard theorem on the 
upper semi-continuity of the spectrum, gives the global stability (without self-adjoint- 
ness of the unperturbed operator!). 

We collect here results from the theory of Bloch Hamiltonians which are needed in 
what follows; see Avron er a1 (1977b), Avron and Simon (1978), Blount (1962), Kohn 
(1959) and Reed and Simon (1978) for details. 

The reduced Bloch functions ( L n k ( ’ ) E  1 ’ ( 2 ~ Z + k ) c  l2(2wZ+k), 

I (Lnk(P)I  cnk( l+p2) -1 *  (11) 

(clnk can be chosen to be real and analytic in k (Avron et a1 1977b, Avron and Simon 
1978), and for isolated bands can be chosen to be periodic (Kohn 1959): (Ln,k+Z.rr = (L, ,k .  

(An isolated band is one with non-vanishing intervals of instability.) Moreover, 4 n . k  

may be chosen so that (Blount 1962) 

Bloch functions which satisfy the above properties are a basis in L2.  This basis is known 
as the crystal momentum representation: 

For an isolated band n and f E L2 n L”, equation (12) is absolutely convergent and 
f(n, k + 2 ~ )  =f(n, k ) .  

Let E,, denote the orthogonal projection on the nth band. Then (Blount 1962) 

(EniEJ)(n, k) = i(d/dk)f(n, k), f E D W ) .  (13) 
Now d/dk, where 

has a pure point spectrum (see example 111.2.7 in Kat0 1966). This extends to 
d/dk + g ( k )  with g measurable, since 

Consequently: 

Corollary 2. Let A,, = E,,HE,, be the restriction of H to an isolated band n. Then A,, has 
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a pure point spectrum. In fact, 

1 “  
(T(A,)= I hlh =me+-  2T I -= ~ , , ( k ) d k , m ~ Z ) ,  

where ~ , , (k )  is the dispersion of the band. 

Proof. We shall prove 

D(A,) = D(d/dk) = D(d/dk + ~ , ( k ) ) .  

Since E , , @ )  is analytic, the RHS is immediate. First note that, for an isolated band n, 
Ex, E,,] is bounded: 

[ x ,  E,,]= -- ( p ’ +  V-<)-’p(p*+ V-[)-’d[. (161 
T ‘s r, 

r, is a (finite) contour around the spectrum of the nth band, and the integrand in (16) is 
bounded. 

Let f E D(x) nD(p2) ;  then ( sx f ) (n ,  k) E L 2 ( - r ,  T) .  By (16), { E , , [ X ~ , , ]  f}(n, k )  E 

L’(---T, T ) .  Hence ( E a , , f )  = i(d/dk)f(n, k )  E L’(-T, T). The converse is also true. 
Let f(k), f ’ ( k ) ~ L ’ ( - r ,  a). By the converse of (12), f (p )  = @ , , k ( p ) f ( k ) .  But 

I I ~ Y P ) I I L ~ ( - ~ , ~ )  [I_: IISL t@f(k)I’ dk]1’2 + I V I L Z ~ - ~ . ~ )  < W. 

The periodicity of f  in k follows from (12). 

Lemma 1. Let E,, be the orthogonal projection on the isolated nth-band subspace, 
EL +E,, = 1. Let W,, = E,,xEL + ELxE,,. W,, is the ‘interband interaction’. Then 

(a) W, is bounded and invariant under the discrete translations U,, a E Z. 
( 6 )  The numerical range of E,,HE,, IEnLqdx) is contained in the strip 

O(E,,HE,,) c {t /Z 3= E, (k) + ea, a E R, k E [-T, TI}. 
(c) The numerical range of ELHE; is contained in the half-plane 

@(ELHE;) c (zit = e , ( k ) + a e  + p ,  cy E R, p > 0,  m z n}. 

Proof. 

ELxE,, = EL[x, E,]. (17) 

The RHS is bounded by (16). Translation invariance follows from [U,, E,] = 0,  a E Z. 
3 (b) and ( c )  follow by arguments identical to those in Blount (1962). 

By proposition 1, W,, is bounded by zero relative to H. Let 

A(@) =H-pEW”. 

It is easy to see that G(p) enjoys the properties of H in part (i) of theorem 1 and has a 
numerical range contained in a half-plane lying to the right of a straight line in the E 

direction. By corollary 2 and lemma l,_the boundedness of W,,,>here is a neighbour- 
hood of 1 such that, for @ close to 1, cr[H(@)] # 0. For such P,-H(@) also satisfies part 
(ii) of theorem 1. We shall now prove that, for all 0 < /3 S 1, v [ H ( p ) ]  has eigenvalues in 
a strip about the nth band, stretched in the E direction. 
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Proof. For simplicity consider E imaginary, 0 = 7r/2 and n the lowest (isolated) band. 
v[fi(l)] has eigenvalues on the line 

which intersects the real axis at l(1). Let l ( p )  denote the intersect as p decreases 
towards zero. Since fi(p) has a numerical range in a half-plane extending to the right, 
l ( p )  a -M. Choose m in the gap. By proposition 1, 

II[A(i) - m]-’ll s : (e  = 7r/2) < 00. (19) 

Choose eO>O such that EollWnllF(0)< 1, and let S be the strip bounded by the lines 
Re z = -M and Re z = m. By the second resolvent equation, aS belongs to the 
resolvent set of A(@), 0 s p s 1. Let Po E [0, 1) be the largest p such that v[fi(p)] n 
S = 0. Consider the compact set So = {zlz E S, -eo s Im z s go} .  By the upper semi- 
continuity of the spectrum (Kato 1966), there is a neighbourhood of Po such that So 
belongs to the resolvent set of A@). Thus there is no such Po. Suppose now Po is the 
smallest /? such that A(@) has a spectrum in S. By the invaria_nce of the spectrum under 
shifts by e, and the fact that aS belongs to the resolvent set of H ( P )  for all p, G(fio) has at 
least one eigenvalue in the interior of So. By a standard perturbation argument there is 
a neighbourhood of Po such that So contains an eigenvalue of I?(@). Thus there is no 

U such smallest PO E [0, 13. 

We conclude with a speculative remark. The quasi-nil-potency of Ho is expected to 
be unstable under perturbations by a local potential function. If so, Hamiltonians with 
‘generic’ V’s  in equation ( 5 )  would have a point spectrum even if there is no spectrum 
for such V ’ s  for E = 0. If the complex field behaviour of the spectrum is relevant to the 
real field behaviour, one would speculate enhanced binding in homogeneous fields! 

Acknowledgments 

It is a pleasure to thank I Herbst for sending me his results prior to publication. I am 
also deeply indebted to B Simon for keeping me informed of the recent developments 
on the Stark problem. 

References 

Avron J E 1976 Phys. Reo. Lett. 37 1568 
Avron J E, Gunther L, Zak J and Grossmann A 1977a J. Math. Phys. 18 918-21 
Avron J E, Rodriguez R and Grossmann A 1977b Ann. Phys. 103 47-63 
Avron J and Simon B 1978 Ann. Phys. 110 85-101 
Bentosela F 1979 Commun. Math. Phys. 68 173-82 
BIount I E 1962 Solid State Physics vol 13, ed. F Seitz and D Turnbull (New York: Academic) 
Herbst I W 1979 Commun. Math. Phys. 64 279-98 
Kat0 T 1966 Perturbation Theory for Linear Operators (New York: Springer) 
Kohn W 1959 Phys. Rev. 115 809-21 
Phillips R S 1959 Trans. Am. Math. Soc. 90 193-254 



2398 J E Avron 

Reed M and Simon B 1978 Methods of Modern Mathematical Physics: IVAnalysis of Operators (New York: 

Wannier G H 1960 Phys. Rev. 117 432 
- 1962 Rev. Mod. Phys. 34 645 
__. 1969 Phys. Rev. 181 1364 
Zak J 1968 Phys. Rev. Lett. 20 1477 
- 1969 Phys. Rev. 181 1366 

Academic) 


