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On the spectrum of p*+ V(x)+ex, with V periodic and €
complex

Joseph E Avront
Centre de Physique Théorique, CNRS, Marseille, France

Received 11 January 1979

Abstract. It is shown that —d?/dx2+ V(x)+ex, with V{(x) periodic and Im ¢ #0, has a
spectrum in the form of a ladder for l¢| small.

A recent important paper by Herbst (1979) shows, among other things, that the
one-dimensional Schrédinger Hamiltonian

Hy=—d?/dx*+ex, n

D(H,) =D( p2) ~D(x), Im € # 0 has a compact resolvent and an empty spectrum. H,
has a compact resolvent by a quadratic estimate (Herbst 1979),

IHow | + allwlP = b(lp | +lxu|), )

with € dependent on a and b. The fact that H, has an empty spectrum follows from the
invariance of the spectrum under translations:

g(Hy+ea)=o(Hy), a eR. (3)
Since o (H,) is countable, o(Hp) = &. Relation (3) follows from
U.HoU' = Ho+ea, 4)
where (U.f)(x)=f(x +a).
We shall prove:

Theorem 1. Let V(x) be piecewise continuous, V(x+1)= V(x), real and V(x)#
constant. Fix 0< 6 <, € =|ele’. Let
H=H;+ V(X), (5)

with D(H) = D(H,). Then:
(i) H is closed and has a compact resolvent.
(ii) For 0< |e|< €, the spectrum o (H) is not empty, is purely discrete (by(i)) and is
invariant under translation by e.

(i) is the easy part of the theorem and is the subject of proposition 1 and corollary 1
below. The rest of the paper is devoted to proving the non-emptiness of the spectrum.
To this end we shall use the periodicity of the spectrum to prove stability.
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Remarks.

(i) Theorem 1 is relevant to the theory of semiconductors: it is associated with the
‘Stark ladder’ controversy (Avron 1976, Wannier 1960, 1962, 1969, Zak 1968, 1969).

(ii) Although we make no claim for real ¢, we note that Bentosela (1979) showed
that for € real there are long-lived states constructed from a subspace with a ‘fixed band
index’.

(iii) Zak (1968, 1969) postulates that the ladder corresponds to distinct atomic
states.

(iv) For € real the spectrum of the self-adjoint extension of H has no discrete
eigenvalues:

o[H(e #0)]= (-0, ©) (6)
and
o[H(e =0)]=[A0, A1]UlAz, A3]U ..., ~0<Ag<AISA2<A3SAy4. .. (7)

(see Avron et al 1977a, Reed and Simon 1978).

(v) V #constant comes into the theorem through the existence of at least one
(instability) gap in the band spectrum (Reed and Simon 1978), (e =0), i.e. at least one
ofthe = in(7)is <.

(vi) In fact, not only is R(A)=[H —A]"" compact but also Fo p>3/2, ie. the
singular values of R are in /” (see Reed and Simon 1978). This follows from the Weyl
estimate of the distribution of eigenvalues of p®+|x| and a perturbative argument
analogous to those in Avron etal (1977b) and Avron and Simon (1978). This seems to
indicate a 1-1 correspondence between the ‘bands’ and the ‘Stark ladders’.

Proposition 1. Let A have a compact resolvent with a numerical range contained in a
strip ®(A) (a half-plane is allowed); then

LA = AT ={dist[, ©(A)}} . (8)

Proof. A is closed and has no proper extensions. Hence m-accretiveness follows from
accretiveness. By multiplying A by a phase and shift it can be made accretive. A
standard result (Phillips 1959) on m-accretives gives (8). ]

From this and theorem II.1 of Herbst (1979) follows:

Corollary 1. Let V(x)e L?oc and be periodic. Then V is bounded by zero relative to
H,.
Proof. By the quadratic estimate (2),

blxRo(M)I* < (1 +alRo()P). 9)
Now

IVIHo=AT < VIp®* = AT (1 + el lxRo(A)]). (10)

V is bounded by zero relative to p? (Phillips 1959). BSI (9) and proposition 1, A can be
chosen so that the rRHs of (10) is arbitrarily small. 0O

This proves part (i) of theorem 1.
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The proof o (H) # & is arigorous version of the ‘single band approximation’ (Avron
etal 1977a, Wannier 1960, 1962, 1969, Zak 1968, 1969). In the first step, corollary 2,
we prove that a restriction of the Hamiltonian to a subspace of a single band has a
spectrum (a Stark ladder). This also holds for the Hamiltonian with no ‘interband
interaction’. The second step is a proof of the global stability of the spectrum under the
‘interband interaction’.

Equation (8) will help us to control the displacement of the Stark ladder eigenvalues
in a direction (in the complex plane) perpendicular to . Although we have no control
on the displacement of the Stark ladder eigenvalues in the direction parallel to ¢, the
periodicity of the spectrum in this direction, together with a standard theorem on the
upper semi-continuity of the spectrum, gives the global stability (without self-adjoint-
ness of the unperturbed operator!).

We collect here results from the theory of Bloch Hamiltonians which are needed in
what follows; see Avron et al (1977b), Avron and Simon (1978), Blount (1962), Kohn
(1959) and Reed and Simon (1978) for details.

The reduced Bloch functions ¢, (- )€ 'QnZ+ k)< ’QnZ +k),

[ (p)| < Cun(1+ D71 (11)

Y. can be chosen to be real and analytic in k (Avron et al 1977b, Avron and Simon
1978), and for isolated bands can be chosen to be periodic (Kohn 1959): ¢,k 12» = ¥k
(An isolated band is one with non-vanishing intervals of instability.) Moreover, ¢,
may be chosen so that (Blount 1962)

- d
lﬁnk(a)gzlﬂnk(a):

ae2nZ+k

Bloch functions which satisfy the above properties are a basis in L>. This basis is known
as the crystal momentum representation:

fin k)= ¥ dula)fla+k). (12)

ae2nZ+k

For an isolated band n and fe L*A L%, equation (12) is absolutely convergent and
fln, k+2m)=f(n, k).
Let E, denote the orthogonal projection on the nth band. Then (Blount 1962)

(E.LEf)(n, k) =1(d/dk)f(n, k), feD(H). (13)
Now d/dk, where

D(3) = ={AreACt-m =} f-m) = flm): /S e L=, m),

has a pure point spectrum (see example II1.2.7 in Kato 1966). This extends to
d/dk + g(k) with g measurable, since

d k d k
—+g=exn( - L 50 di) EEexp(I g(r) dr). (14)
Consequently:

Corollary 2. Let A, = E, HE, be the restriction of H to anisolated band n. Then A, has
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a pure point spectrum. In fact,

cr(A,‘)={)\|A =me+51; J_:en(k)dk,meZ}, (15)
where €,(k) is the dispersion of the band.

Proof. We shall prove
D(A,)=D(d/dk)=D(d/dk +¢.(k)).

Since ¢,(k) is analytic, the RHS is immediate. First note that, for an isolated band n,
[x, E.]is bounded:

(v Ed=—= | 0"+ V-85 V-0 e (16)
mJr,

I, is a (finite) contour around the spectrum of the nth band, and the integrand in (16) is
bounded. - o

Let fe D(x) nD(p?); then (E,xf)(n, k)€ L*(—=m, w). By (16), {E.[x, E,1f}(n, k)e
Lz(—-An', 71-)‘. Hence (Eﬁ,f)=i(d/dk)f(n, k)e L*(—m, m). The converse is also true.
Let f(k), f'(k)e L*(—m, 7). By the converse of (12), f(p) = ¢ (p)f (k). But

e ={ | W3R a1l <0
The periodicity of f in k follows from (12). O

Lemma 1. Let E, be the orthogonal projection on the isolated nth-band subspace,
E,.+E,=1. Let W, =E,xE, + E,xE,. W, is the ‘interband interaction’. Then

(a) W, is bounded and invariant under the discrete translations U,, a € Z.

{b) The numerical range of E,HE, | g,124x) is contained in the strip

O(E.HE,)c{z|z =€, (k) +ea, xR, k e[—m, 7]}
(¢) The numerical range of E,HE, | g:124x) is contained in the half-plane
O(ELHE' ) c{z|z=€n(k) +ae+B,a e R, B>0, m #n}.

Proof.

ExE,=E,[x, E,]. 17)
The rRHS is bounded by (16). Translation invariance follows from [U,, E,]=0, a € Z.
(b) and (¢) follow by arguments identical to those in Blount (1962). |

By proposition 1, W, is bounded by zero relative to H. Let
H(B)=H - BeW.,. (18)

It is easy to see that H (8) enjoys the properties of H in part (i) of theorem 1 and has a
numerical range contained in a half-plane lying to the right of a straight line in the ¢
direction. By corollary 2 and lemma 1, the boundedness of W, there is a neighbour-
hood of 1 such that, for 8 close to 1, o[H(8)]# &. Forsuch B, H(B) also satisfies part
(ii) of theorem 1. We shall now prove that, forall0<g <1, a-[H {B)] has eigenvalues in
a strip about the nth band, stretched in the e direction.
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Proof. For simplicity consider € imaginary, 8 = 7/2 and n the lowest (isolated) band.
o[H(1)] has eigenvalues on the line

Re z =—1— J €,(k)dk
27 I,

which intersects the real axis at / (1). Let I(8) denote the intersect as 8 decreases
towards zero. Since H(B) has a numerical range in a half-plane extending to the right,
[(B)= —M. Choose m in the gap. By proposition 1,

IIH 1) —m] < F(6=m/2)<oo. (19)

Choose €,> 0 such that eo|W,|[F(8)<1, and let S be the strip bounded by the lines
Rez=-M and Rez=m. By the second resolvent equation, S belongs to the
resolvent set of H(8), 0<B<1. Let Bo<[0, 1) be the largest B such that o[H(8)]1
S = . Consider the compact set So={z|z € S, —eo<Im z <¢o}. By the upper semi-
continuity of the spectrum (Kato 1966), there is a neighbourhood of B, such that S,
belongs to the resolvent set of H(B). Thus there is no such Bo. Suppose now B, is the
smallest 8 such that H(8) hasa spectrumin S. By the invariance of the spectrum under
shifts by ¢, and the fact that 4S belongs to the resolvent set of H(B)forall 8, H(Bo) has at
least one eigenvalue in the interior of So. By a standard perturbauon argument there is
a neighbourhood of Bo such that S, contains an eigenvalue of H (B). Thus there is no
such smallest 8o €[0, 1]. ]

We conclude with a speculative remark. The quasi-nil-potency of Hj is expected to
be unstable under perturbations by a local potential function. If so, Hamiltonians with
‘generic’ Vs in equation (5) would have a point spectrum even if there is no spectrum
for such V’s for € = 0. If the complex field behaviour of the spectrum is relevant to the
real field behaviour, one would speculate enhanced binding in homogeneous fields!
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