On the spectrum of $p^{2}+V(x)+\epsilon x$, with V periodic and ϵ complex

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1979 J. Phys. A: Math. Gen. 122393
(http://iopscience.iop.org/0305-4470/12/12/017)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 19:16

Please note that terms and conditions apply.

On the spectrum of $p^{2}+V(x)+\epsilon x$, with V periodic and ϵ complex

Joseph E Avron \dagger
Centre de Physique Théorique, CNRS, Marseille, France

Received 11 January 1979

> Abstract. It is shown that $-\mathrm{d}^{2} / \mathrm{d} x^{2}+V(x)+\epsilon x$, with $V(x)$ periodic and $\operatorname{Im} \epsilon \neq 0$, has a spectrum in the form of a ladder for $|\epsilon|$ small.

A recent important paper by Herbst (1979) shows, among other things, that the one-dimensional Schrödinger Hamiltonian

$$
\begin{equation*}
H_{0}=-\mathrm{d}^{2} / \mathrm{d} x^{2}+\epsilon x \tag{1}
\end{equation*}
$$

$\mathrm{D}\left(H_{0}\right)=\mathrm{D}\left(p^{2}\right) \cap \mathrm{D}(x), \operatorname{Im} \epsilon \neq 0$ has a compact resolvent and an empty spectrum. H_{0} has a compact resolvent by a quadratic estimate (Herbst 1979),

$$
\begin{equation*}
\left\|H_{0} \psi\right\|^{2}+a\|\psi\|^{2} \geqslant b\left(\left\|p^{2} \psi\right\|^{2}+\|x \psi\|^{2}\right) \tag{2}
\end{equation*}
$$

with ϵ dependent on a and b. The fact that H_{0} has an empty spectrum follows from the invariance of the spectrum under translations:

$$
\begin{equation*}
\sigma\left(H_{0}+\epsilon \alpha\right)=\sigma\left(H_{0}\right), \quad \alpha \in \mathbb{R} \tag{3}
\end{equation*}
$$

Since $\sigma\left(H_{0}\right)$ is countable, $\sigma\left(H_{0}\right)=\varnothing$. Relation (3) follows from

$$
\begin{equation*}
U_{\alpha} H_{0} U_{\alpha}^{-1}=H_{0}+\epsilon \alpha, \tag{4}
\end{equation*}
$$

where $\left(U_{\alpha} f\right)(x)=f(x+\alpha)$.
We shall prove:
Theorem 1. Let $V(x)$ be piecewise continuous, $V(x+1)=V(x)$, real and $V(x) \neq$ constant. Fix $0<\theta<\pi, \epsilon=|\epsilon| \mathrm{e}^{\mathrm{i} \theta}$. Let

$$
\begin{equation*}
H=H_{0}+V(x) \tag{5}
\end{equation*}
$$

with $\mathrm{D}(H)=\mathrm{D}\left(H_{0}\right)$. Then:
(i) H is closed and has a compact resolvent.
(ii) For $0<|\epsilon|<\epsilon_{0}$, the spectrum $\sigma(H)$ is not empty, is purely discrete (by(i)) and is invariant under translation by ϵ.
(i) is the easy part of the theorem and is the subject of proposition 1 and corollary 1 below. The rest of the paper is devoted to proving the non-emptiness of the spectrum. To this end we shall use the periodicity of the spectrum to prove stability.
\dagger Present address: Department of Physics, Technion, Haifa, Israel.

Remarks.
(i) Theorem 1 is relevant to the theory of semiconductors: it is associated with the 'Stark ladder' controversy (Avron 1976, Wannier 1960, 1962, 1969, Zak 1968, 1969).
(ii) Although we make no claim for real ϵ, we note that Bentosela (1979) showed that for ϵ real there are long-lived states constructed from a subspace with a 'fixed band index'.
(iii) $\mathrm{Zak}(1968,1969)$ postulates that the ladder corresponds to distinct atomic states.
(iv) For ϵ real the spectrum of the self-adjoint extension of H has no discrete eigenvalues:

$$
\begin{equation*}
\sigma[H(\epsilon \neq 0)]=(-\infty, \infty) \tag{6}
\end{equation*}
$$

and
$\sigma[H(\epsilon=0)]=\left[\lambda_{0}, \lambda_{1}\right] \cup\left[\lambda_{2}, \lambda_{3}\right] \cup \ldots, \quad-\infty<\lambda_{0}<\lambda_{1} \leqslant \lambda_{2}<\lambda_{3} \leqslant \lambda_{4} \ldots$
(see Avron et al 1977a, Reed and Simon 1978).
(v) $V \neq$ constant comes into the theorem through the existence of at least one (instability) gap in the band spectrum (Reed and Simon 1978), ($\epsilon=0$), i.e. at least one of the \leqslant in (7) is $<$.
(vi) In fact, not only is $R(\lambda)=[H-\lambda]^{-1}$ compact but also $\mathscr{f}_{p}, p>3 / 2$, i.e. the singular values of R are in l^{p} (see Reed and Simon 1978). This follows from the Weyl estimate of the distribution of eigenvalues of $p^{2}+|x|$ and a perturbative argument analogous to those in Avron et al (1977b) and Avron and Simon (1978). This seems to indicate a 1-1 correspondence between the 'bands' and the 'Stark ladders'.

Proposition 1. Let A have a compact resolvent with a numerical range contained in a strip $\Theta(A)$ (a half-plane is allowed); then

$$
\begin{equation*}
\left\|[A-\lambda]^{-1}\right\| \leqslant\{\operatorname{dist}[\lambda, \Theta(A)]\}^{-1} \tag{8}
\end{equation*}
$$

Proof. A is closed and has no proper extensions. Hence m-accretiveness follows from accretiveness. By multiplying A by a phase and shift it can be made accretive. A standard result (Phillips 1959) on m-accretives gives (8).

From this and theorem II. 1 of Herbst (1979) follows:
Corollary 1. Let $V(x) \in L_{\text {Loc }}^{2}$ and be periodic. Then V is bounded by zero relative to H_{0}.

Proof. By the quadratic estimate (2),

$$
\begin{equation*}
b\left\|x R_{0}(\lambda)\right\|^{2} \leqslant\left(1+a\left\|R_{0}(\lambda)\right\|^{2}\right) \tag{9}
\end{equation*}
$$

Now

$$
\begin{equation*}
\left\|V\left[H_{0}-\lambda\right]^{-1}\right\| \leqslant\left\|V\left[p^{2}-\lambda\right]^{-1}\right\|\left(1+|\epsilon|\left\|x R_{0}(\lambda)\right\|\right) \tag{10}
\end{equation*}
$$

V is bounded by zero relative to p^{2} (Phillips 1959). By (9) and proposition $1, \lambda$ can be chosen so that the RHS of (10) is arbitrarily small.

This proves part (i) of theorem 1.

The proof $\sigma(H) \neq \varnothing$ is a rigorous version of the 'single band approximation' (Avron et al 1977a, Wannier 1960, 1962, 1969, Zak 1968, 1969). In the first step, corollary 2, we prove that a restriction of the Hamiltonian to a subspace of a single band has a spectrum (a Stark ladder). This also holds for the Hamiltonian with no 'interband interaction'. The second step is a proof of the global stability of the spectrum under the 'interband interaction'.

Equation (8) will help us to control the displacement of the Stark ladder eigenvalues in a direction (in the complex plane) perpendicular to ϵ. Although we have no control on the displacement of the Stark ladder eigenvalues in the direction parallel to ϵ, the periodicity of the spectrum in this direction, together with a standard theorem on the upper semi-continuity of the spectrum, gives the global stability (without self-adjointness of the unperturbed operator!).

We collect here results from the theory of Bloch Hamiltonians which are needed in what follows; see Avron et al (1977b), Avron and Simon (1978), Blount (1962), Kohn (1959) and Reed and Simon (1978) for details.

The reduced Bloch functions $\psi_{n k}(\cdot) \in l^{1}(2 \pi \mathbb{Z}+k) \subset l^{2}(2 \pi \mathbb{Z}+k)$,

$$
\begin{equation*}
\left|\psi_{n k}(p)\right| \leqslant C_{n k}\left(1+p^{2}\right)^{-1} \tag{11}
\end{equation*}
$$

$\psi_{n k}$ can be chosen to be real and analytic in k (Avron et al 1977b, Avron and Simon 1978), and for isolated bands can be chosen to be periodic (Kohn 1959): $\psi_{n, k+2 \pi}=\psi_{n, k}$. (An isolated band is one with non-vanishing intervals of instability.) Moreover, $\psi_{n, k}$ may be chosen so that (Blount 1962)

$$
\sum_{a \in 2 \pi \mathbf{Z}+k} \bar{\psi}_{n k}(a) \frac{\mathrm{d}}{\mathrm{~d} k} \psi_{n k}(a)=0 .
$$

Bloch functions which satisfy the above properties are a basis in L^{2}. This basis is known as the crystal momentum representation:

$$
\begin{equation*}
\hat{f}(n, k)=\sum_{a \in 2 \pi \mathbb{Z}+k} \bar{\psi}_{n k}(a) f(a+k) . \tag{12}
\end{equation*}
$$

For an isolated band n and $f \in L^{2} \cap L^{\infty}$, equation (12) is absolutely convergent and $\hat{f}(n, k+2 \pi)=\hat{f}(n, k)$.

Let E_{n} denote the orthogonal projection on the nth band. Then (Blount 1962)

$$
\begin{equation*}
\left(E_{n} \hat{x} E_{n} f\right)(n, k)=\mathrm{i}(\mathrm{~d} / \mathrm{d} k) \hat{f}(n, k), \quad f \in \mathrm{D}(H) \tag{13}
\end{equation*}
$$

Now d/dk, where

$$
\mathrm{D}\left(\frac{\mathrm{~d}}{\mathrm{~d} k}\right)==\left\{f \mid f \in A C[-\pi, \pi] ; f(-\pi)=f(\pi) ; f, \frac{\mathrm{~d} f}{\mathrm{~d} k} \in L^{2}(-\pi, \pi)\right\},
$$

has a pure point spectrum (see example III.2.7 in Kato 1966). This extends to $\mathrm{d} / \mathrm{d} k+g(k)$ with g measurable, since

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} k}+g=\exp \left(-\int_{-\pi}^{k} g(t) \mathrm{d} t\right) \frac{\mathrm{d}}{\mathrm{~d} k} \exp \left(\int_{\pi}^{k} g(\tau) \mathrm{d} \tau\right) \tag{14}
\end{equation*}
$$

Consequently:
Corollary 2. Let $A_{n}=E_{n} H E_{n}$ be the restriction of H to an isolated band n. Then A_{n} has
a pure point spectrum. In fact,

$$
\begin{equation*}
\sigma\left(A_{n}\right)=\left\{\lambda \left\lvert\, \lambda=m \epsilon+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \epsilon_{n}(k) \mathrm{d} k\right., m \in \mathbb{Z}\right\} \tag{15}
\end{equation*}
$$

where $\epsilon_{n}(k)$ is the dispersion of the band.
Proof. We shall prove

$$
\mathrm{D}\left(A_{n}\right)=\mathrm{D}(\mathrm{~d} / \mathrm{d} k)=\mathrm{D}\left(\mathrm{~d} / \mathrm{d} k+\epsilon_{n}(k)\right)
$$

Since $\epsilon_{n}(k)$ is analytic, the RHS is immediate. First note that, for an isolated band n, [x, E_{n}] is bounded:

$$
\begin{equation*}
\left[x, E_{n}\right]=-\frac{1}{\pi} \int_{\Gamma_{n}}\left(p^{2}+V-\xi\right)^{-1} p\left(p^{2}+V-\xi\right)^{-1} \mathrm{~d} \xi \tag{16}
\end{equation*}
$$

Γ_{n} is a (finite) contour around the spectrum of the nth band, and the integrand in (16) is bounded.

Let $f \in \mathrm{D}(x) \cap \mathrm{D}\left(p^{2}\right)$; then $\left(\widehat{E_{n}} x f\right)(n, k) \in L^{2}(-\pi, \pi)$. By $(16),\left\{E_{n}\left[\widehat{x, E_{n}}\right] f\right\}(n, k) \in$ $L^{2}(-\pi, \pi)$. Hence $\left(\hat{E}_{n} x E_{n} f\right)=\mathrm{i}(\mathrm{d} / \mathrm{d} k) \hat{f}(n, k) \in L^{2}(-\pi, \pi)$. The converse is also true. Let $\hat{f}(k), \hat{f}^{\prime}(k) \in L^{2}(-\pi, \pi)$. By the converse of (12), $f(p)=\psi_{n k}(p) \hat{f}(k)$. But

$$
\left\|f^{\prime}(p)\right\|_{L^{2}(-\infty, \infty)} \leqslant\left\{\int_{-\pi}^{\pi}\left\|\psi_{n k}^{\prime}\right\|_{l_{k}}^{2}|f(k)|^{2} \mathrm{~d} k\right\}^{1 / 2}+\left\|\hat{f}^{\prime}\right\|_{L^{2}(-\pi, \pi)}<\infty .
$$

The periodicity of f in k follows from (12).
Lemma 1. Let E_{n} be the orthogonal projection on the isolated n th-band subspace, $E_{n}^{\prime}+E_{n}=1$. Let $W_{n}=E_{n} x E_{n}^{\prime}+E_{n}^{\prime} x E_{n} . W_{n}$ is the 'interband interaction'. Then
(a) W_{n} is bounded and invariant under the discrete translations $U_{\alpha}, \alpha \in \mathbb{Z}$.
(b) The numerical range of $E_{n} H E_{n} \upharpoonright_{E_{n} L^{2}(d x)}$ is contained in the strip

$$
\Theta\left(E_{n} H E_{n}\right) \subseteq\left\{z \mid z=\epsilon_{n}(k)+\epsilon \alpha, \alpha \in \mathbb{R}, k \in[-\pi, \pi]\right\} .
$$

(c) The numerical range of $E_{n}^{\prime} H E_{n}^{\prime} \upharpoonright_{E_{n}^{\prime} L^{2}(d x)}$ is contained in the half-plane

$$
\Theta\left(E_{n}^{\prime} H E_{n}^{\prime}\right) \subseteq\left\{z \mid z=\epsilon_{m}(k)+\alpha \epsilon+\beta, \alpha \in \mathbb{R}, \beta>0, m \neq n\right\} .
$$

Proof.

$$
\begin{equation*}
E_{n}^{\prime} x E_{n}=E_{n}^{\prime}\left[x, E_{n}\right] . \tag{17}
\end{equation*}
$$

The RHS is bounded by (16). Translation invariance follows from $\left[U_{\alpha}, E_{n}\right]=0, \alpha \in \mathbb{Z}$. (b) and (c) follow by arguments identical to those in Blount (1962).

By proposition 1, W_{n} is bounded by zero relative to H. Let

$$
\begin{equation*}
\tilde{H}(\beta)=H-\beta \epsilon W_{n} \tag{18}
\end{equation*}
$$

It is easy to see that $\tilde{H}(\beta)$ enjoys the properties of H in part (i) of theorem 1 and has a numerical range contained in a half-plane lying to the right of a straight line in the ϵ direction. By corollary 2 and lemma 1 , the boundedness of W_{n}, there is a neighbourhood of 1 such that, for β close to $1, \sigma[\tilde{H}(\beta)] \neq \varnothing$. For such $\beta, \tilde{H}(\beta)$ also satisfies part (ii) of theorem 1. We shall now prove that, for all $0 \leqslant \beta \leqslant 1, \sigma[\tilde{H}(\beta)]$ has eigenvalues in a strip about the nth band, stretched in the ϵ direction.

Proof. For simplicity consider ϵ imaginary, $\theta=\pi / 2$ and n the lowest (isolated) band. $\sigma[\tilde{H}(1)]$ has eigenvalues on the line

$$
\operatorname{Re} z=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \epsilon_{n}(k) \mathrm{d} k
$$

which intersects the real axis at $l(1)$. Let $l(\beta)$ denote the intersect as β decreases towards zero. Since $\tilde{H}(\beta)$ has a numerical range in a half-plane extending to the right, $l(\beta) \geqslant-M$. Choose m in the gap. By proposition 1,

$$
\begin{equation*}
\left\|[\tilde{H}(1)-m]^{-1}\right\| \leqslant F(\theta=\pi / 2)<\infty . \tag{19}
\end{equation*}
$$

Choose $\epsilon_{0}>0$ such that $\epsilon_{0}\left\|W_{n}\right\| F(\theta)<1$, and let S be the strip bounded by the lines $\operatorname{Re} z=-M$ and $\operatorname{Re} z=m$. By the second resolvent equation, ∂S belongs to the resolvent set of $\tilde{H}(\beta), 0 \leqslant \beta \leqslant 1$. Let $\beta_{0} \in[0,1)$ be the largest β such that $\sigma[\tilde{H}(\beta)] \cap$ $S=\varnothing$. Consider the compact set $S_{0}=\left\{z \mid z \in S,-\epsilon_{0} \leqslant \operatorname{Im} z \leqslant \epsilon_{0}\right\}$. By the upper semicontinuity of the spectrum (Kato 1966), there is a neighbourhood of β_{0} such that S_{0} belongs to the resolvent set of $\tilde{H}(\beta)$. Thus there is no such β_{0}. Suppose now β_{0} is the smallest β such that $\tilde{H}(\beta)$ has a spectrum in S. By the invariance of the spectrum under shifts by ϵ, and the fact that ∂S belongs to the resolvent set of $\tilde{H}(\beta)$ for all $\beta, \tilde{H}\left(\beta_{0}\right)$ has at least one eigenvalue in the interior of S_{0}. By a standard perturbation argument there is a neighbourhood of β_{0} such that S_{0} contains an eigenvalue of $\tilde{H}(\beta)$. Thus there is no such smallest $\beta_{0} \in[0,1]$.

We conclude with a speculative remark. The quasi-nil-potency of H_{0} is expected to be unstable under perturbations by a local potential function. If so, Hamiltonians with 'generic' V 's in equation (5) would have a point spectrum even if there is no spectrum for such V 's for $\epsilon=0$. If the complex field behaviour of the spectrum is relevant to the real field behaviour, one would speculate enhanced binding in homogeneous fields!

Acknowledgments

It is a pleasure to thank I Herbst for sending me his results prior to publication. I am also deeply indebted to B Simon for keeping me informed of the recent developments on the Stark problem.

References

Reed M and Simon B 1978 Methods of Modern Mathematical Physics: IV Analysis of Operators (New York: Academic)
Wannier G H 1960 Phys. Rev. 117432

- 1962 Rev. Mod. Phys. 34645

1969 Phys. Rev. 1811364
Zak J 1968 Phys. Rev. Lett. 201477
_- 1969 Phys. Rev. 1811366

